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Abstract- The SeaWinds  on  QuikSCAT  scatterometer 
(QSCAT) was developed by NASA JPL  to measure the 
speed and  direction of ocean  surface  winds. The accuracy 
of the  majority of the  swath,  and  the size of the  swath  are 
such that QSCAT  meets  its science requirements  despite 
shortcomings at certain cross track  positions. Nonethe- 
less, it was desirable to modify the baseline processing 
in  order to  improve the  quality of the less accurate por- 
tions of the  swath, in particular  near  the  far  swath  and 
nadir.  Two  disparate  problems have been identified for far 
swath  and  nadir.  At  far  swath,  ambiguity removal skill 
is degraded  due to  the absence of inner  beam measure- 
ments,  limited  azimuth diversity, and  boundary effects. 
Near nadir,  due  to  nonoptimal  measurement  geometry, 
(measurement  azimuths  approximately 180' apart)  there 
is a marked decrease in  directional  accuracy even when 
ambiguity  removal works correctly. Two  algorithms were 
developed,  direction  interval  retrieval (DIR)  to address the 
nadir  performance  issue,  and  thresholded  nudging ( T N )  to  
improve ambiguity removal at  far  swath. 

We illustrate  the  impact of the two  techniques by  ex- 
hibiting  post-launch  statistical  performance  metrics  with 
respect to European  Center for Medium-range  Weather 
Forecasting (ECMWF) wind fields. 

INTRODUCTION 

Before discussing the new algorithms  in  detail, we first 
review some of the general  theory of wind scatterometers 
as well as  some  features  peculiar to  the QSCAT  instru- 
ment. A scatterometer is a microwave radar which mea- 
sures the normalized  backscatter cross section, 60. Geo- 
physical  model  functions (GMF) have been developed  em- 
pirically which map ocean wind speed and direction to 
60 [l, 2, 31. The theoretical  basis of this  relationship is 
the action of wind on small-scale  (capillary)  ocean  surface 
waves, which in  turn effect the ocean  surface  backscatter 

A  single 60 value may have  been  produced by a number 
of different wind vectors.  Multiple  measurements  from 
different look  geometries  are  required  in  order to uniquely 
determine a wind  vector. The QSCAT  scatterometer em- 
ploys two  conically  scanning antenna  beams.  The two 
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beams differ in incidence  angle (46', inner beam; 54', 
outer  beam)  and  polarization (H pol,  inner  beam; V pol, 
outer  beam). For most of the  swath, every 25 km by 25 
km cell on  the  ground is  measured  using  four different look 
geometry  configurations. Fore and aft measurements  are 
obtained for  each beam. 

The viewing geometry differs across the  swath. For the 
outer  portions  the  swath,  the viewing geometry  is  subop- 
timal: no  inner beam  measurements  are  available,  and as 
the  extreme edge of the  swath is  approached, the  azimuth 
diversity of the measurements  approaches zero. At  nadir, 
both  beams  are  available,  but  the  antenna  azimuths  are 
nearly 180 degrees apart between  fore and  aft looks. For 
more  detailed discussion of the QSCAT  instrument see [5]. 

ALGORITHM 

Direction  Interval  Retrieval 

For QSCAT the  rate at which the likelihood  value  drops 
off from  the  maxima varies  with cross track  distance. For 
wind vector cells near nadir,  there  are  large  ranges of di- 
rection over which the likelihood  value  is  relatively similar, 
and  it is inaccurate to represent the set of likely wind vec- 
tors by the likelihood maxima  alone.  The  DIR  method  ad- 
dresses this  problem by calculating a solution  set for each 
wind vector cell which includes a range of wind directions 
around each  likelihood maxima.  The  extent of the ranges 
is  determined  independently  for  each wind vector cell ac- 
cording to  the specific shape of the likelihood  function for 
that cell. 

The  DIR  technique is a set  theoretic  estimation tech- 
nique [6] which incorporates  information  from the 60 mea- 
surements  and a model of the noise on  those  measurements 
in  order to  construct the solution  set. Allowing the tech- 
nique to  consider all  possible  sets of wind  vectors would 
be  time  prohibitive, so a simplifying  assumption  must be 
made  regarding  the  types of sets  to  be considered. For 
each wind direction 4 there is a wind  speed u(+) which 
maximizes the likelihood function. We refer to  the curve 
thus defined as  the  best speed  ridge. In  the baseline  tech- 
nique,  solution  sets  are  four or fewer points  on  the  best 
speed  ridge  corresponding to  local  likelihood maxima.  In 
DIR,  solution  sets  are generalized to  four or fewer  seg- 
ments of the  best speed  ridge,  with  each  segment  includ- 
ing  a  local  maxima.  This choice of solution  set  is  justified 
by the  observations  that likelihood  drops off sharply for 



speeds away from the best  speed  ridge, and  that when- 
ever the wind direction  is  determined  accurately the wind 
speed is as well. 

The  endpoints of the segments  are  determined by  es- 
timating  error  bounds in  a manner  similar to  techniques 
described in [7]. These techniques estimate  probability 
distributions  (and confidence intervals)  for  each  measure- 
ment  then combine  information by intersecting  solution 
sets derived from confidence intervals  on  each  measure- 
ment.  The DIR  technique  instead  estimates a joint prob- 
ability  distribution for  all the measurements  and  then di- 
rectly  computes the solution  set, yielding a more  accurate 
result.  Such  a  technique  is  seldom  employed  due to com- 
putational efficiency concerns, but since most of the in- 
formation needed for the calculation  is  already  available 
from the  maximum likelihood estimator  and  the search 
space  is  limited to  one  dimension  (by the  best speed  ridge 
assumption) efficiency is  not a problem. 

We assume the noise on  the  measurements is mutually 
independent  and  Gaussian. The  means  and variance of the 
Gaussian noise used in the  maximum likelihood estimator 
can  be used to  compute  the  conditional  probability den- 
sity of obtaining  the a0 measurements given a wind  vector 
represented by speed and  direction (u ,4) ,  P({aoa}lu,q5). 
In  fact  the  conditional  probability is  related to  the likeli- 
hood  estimate f (u ,  4) by: 

for some  constant IC. By assuming the prior  wind  speed 
and direction  probabilities  are  uniform, Bayes' theorem 
can  be used to  estimate  the  conditional  probability den- 
sity of wind  solutions given the measurements.  In  order 
to simplify the processing we normalize so that  the prob- 
ability that  the wind  solution  falls  on the best  speed  ridge 
is one. 

Once the  estimation of the  probability  density  function 
(pdf)  has been obtained,  the  solution  set  segments  are de- 
termined by thresholding the probability.  Given a thresh- 
old T ,  a set of directional  intervals  around  each of the local 
maxima is  selected  such that  the  sum of the  widths of the 
intervals  is  minimized  and the integral of the pdf over the 
intervals  is T .  From simulation,  the choice of T = 0.8 was 
found to  be reasonable. 

Once the solution  set  has  been  calculated for each wind 
vector.  Ambiguity  removal  is  performed to select a unique 
solution  vector  from  each  solution  set.  A  two  step proce- 
dure  is  employed. First  one of the  disjoint  segments which 
composes each solution  set is  selected by performing  ambi- 
guity  removal in  the  usual  manner '. Ambiguity  removal 
is  performed on  the local  likelihood maximas  and  the seg- 
ment which encloses the selected maxima is chosen. Next, 
a unique vector within the chosen segment  is selected by 

lwith the  exception  that  the  median  filter  is  initialized  using 
thresholded  nudging.  See  next  section for more detail. 

iteratively choosing the vector which is closest in direction 
to  the  median vector of the  surrounding 7 x 7 window.2 
Each  wind vector cell is  initialized by the  maxima  within 
the selected  segment. Wind vectors are  not  updated  until 
after  each  median  filtering  pass  is  complete.  Passes con- 
tinue  until  no wind vectors  change by more than a thresh- 
old amount (5 degrees) or a maximum  number of passes 
(100) is  exceeded. 

Thresholded  Nudging 

The baseline  nudging algorithm, which is  identical to  the 
NSCAT algorithm, chooses an  ambiguity  to  initialize  the 
median  filter.  The  number of ambiguities  available  for ini- 
tialization  must  be  limited in  order to  minimize the influ- 
ence of the nudging  field,  and to  use as  much  scatterometer 
information as possible. If all  ambiguities  are allowed to  
be selected by the  nudging field, the retrieved  wind field 
would be very close to  the nudged  wind field, defeating 
the point of making  the  measurement.  Currently,  that 
algorithm only allows one of the two most likely ambigu- 
ities to  be chosen. The  rationale for that  limit is  based 
on NSCAT  experience: we assume that  the  scatterometer 
can choose the correct streamline,  and  want  the nudging 
field to  select the proper  ambiguity  from  that line. 

The QSCAT  situation is quite different from the NSCAT 
situation.  In  the  outer  swath,  the  scatterometer  can  not 
always select the correct streamline. A  significant  percent- 
age of the  time (10-15 percent  in  simulation)  the  ambiguity 
closest to  the  truth is the  third or fourth  ranked  ambigu- 
ity. Given that  situation, one  method  that suggests itself 
is to  use more  ambiguities  for  nudging  in the  outer  swath. 

The likelihood  function  can be converted into  an esti- 
mate of probability. (see previous  section) Using equation 
1 we calculate relative likelihood a quantity  proportional 
to P({aoi}Iu, 4) normalized so that  the relative likelihood 
of the first  ranked  ambiguity is  one. The  method by which 
we set the  maximum  rank for  nudging  is  based  on choosing 
the  number of ambiguities  above a certain  threshold, M in 
relative  likelihood. The threshold itself should  be a func- 
tion of the quality of the nudge field. The value used to 
generate the results  presented  in this  paper, M = 0.2, was 
determined  via  simulation.  Wind  performance was found 
to be  relatively  insensitive to this value  (in  simulation) 
with  values of .1 and .3 yielding similar  performance. 

RESULTS 

Comparisons to  ECMWF 

In  this section we compare  QSCAT retrieved  winds  using 
both  the baseline and  DIRTH techniques with  ECMWF 
analysis wind fields. One degree by one degree ECMWF 

'The  window  size  was  chosen to correspond to the  size  used by 
the  baseline  median  filtering  algorithm.  Additional window sizes 
deserve  further study both for DIR and  the  standard  algorithm. 
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Figure 1: 

wind fields were used and  interpolated  spatially  (but  not 
temporally)  to  the  QSCAT wind vector cell locations. 
ECMWF wind fields are  produced every six  hours  and 
each 90 minute  QSCAT  orbit was only  co-located  with a 
single ECMWF field, so that  the greatest possible tem- 
poral difference is three  hours  and 45 minutes.  When 
on  occasion a particular  ECMWF wind field was unavail- 
able the  orbits  temporally co-located with  that field were 
left out of the  analysis.  Figure 1 depicts the RMS direc- 
tion difference between ECMWF  and  the retrieved  winds 
for the baseline (GS)  and  DIRTH wind retrieval  methods. 
The directional differences are  plotted versus cross track 
distance for four  ranges of ECMWF wind speeds.  Figure 
2  depicts  the  RMS speed  differences  similarly. High lati- 
tudes were left out in  order to avoid problems  with known 
errors  in the QSCAT ice edge map. High latitudes do tend 
to have higher wind speeds, but since we break down the 
results by wind speed the  impact of preferentially  remov- 
ing  high  speed cases is likely to  be  minimal. 

DIRTH reduces the directional differences from  ECMWF 
significantly  across the  entire  swath for all  ranges of wind 
speeds. The speed  RMS difference values are  similar for 
the baseline and  DIRTH cases. The only substantial dif- 
ferences are a slight  advantage for  DIRTH in the  mid 
swath region for the two highest wind speed  ranges.  There 
is also a small discrepancy  in the  far  swath  with a marginal 
advantage for DIRTH at  the highest wind speed  range, 
and a similarly  marginal  advantage for the baseline tech- 
nique at  lower wind speeds. 

SUMMARY 

In  summary,  the  DIRTH  method  noticeably improves the 
QSCAT  retrieved wind vector  solutions,  as  evidenced by 
comparisons  with ECMWF,  and reduces the cross swath 
variation  in wind vector accuracy.  DIRTH  solution vec- 
tors  along  with  the baseline selected ambiguities  are now 
available  in the official  QSCAT L2B product. 

Figure 2: 
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